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Solutions are given for two-dimensional  problems of heat  conduction in a hollow cylinder with quasi-s teady 
heat ing (constant heat ing rate) for a boundary condition of the second kind at the inner surface of the cy l -  
inder, and boundary conditions of the third or first kind at  the outer surface. The effect of axial  heat  flux 
on the temperature field of the hollow cylinder is es t imated,  

Most existing methods for determining thermophysical  properties of materials  are based on the solution of hea t  
conduction problems that st ipulate one-dimensional  heat  flow in the mater ia l  examined.  The resulting ma themat i ca l  
expression for the temperature field in the specimen is in each case some approximation to the ac tual  field,  since i t  
must be assumed that the ac tual ly  fioite dimensions of the sample are inf ini te ly  large.  On the other hand, this is fully justified 
by the fact that in one-dimensional  problems the expressions for temperature  fields are re la t ive ly  s imple in form and 
usually yield uncomplicated formulas for ca lcula t ing  thermophysieal  properties. It should also b e  noted that great  diff i -  
culty is often encountered in solving two-dimensional  problems, and even more so in the three-d imensional  ease. 

It is evident  that the exper imenta l  rea l iza t ion  of methods based on the solution of one-dimensional  problems also 
requires conditions ensuring a one-dimensional  temperature field in the specimens with a sufficient degree of accuracy.  
Absence of these conditions leads to a considerable error, which may  escape the notice of the exper imenter  if the ex-  

per imenta l  technique does not allow close control of the process, espec ia l ly  since deviat ion from the boundary conditions 

of the problem is often disregarded in est imating the error of the method, the values given in the l i terature  often being 
the instrumental error only. 

In the part icular  ease of heat ing of a cyl indr ical  specimen in a furnace by a radial  heat  flux, the question inev i -  

tably arises of distortion of the one-dimensional  temperature  field due to heat  flux para l le l  to the cyl inder  axis. In this 
case, and indeed for a body of any shape, there are two alternatives:  1) to base the method on the solution of a two- 

dimensional  problem or to introduce empir ica l  correction factors into the calculat ions,  and 2) to select  a specific ratio 
between the dimensions of the test specimen (for a cylinder,  the ratio of length to diameter)  or to use a shielding device 
to min imize  the influence of axia l  fluxes on the temperature field at  the points of temperature  measurement .  

The major i ty  of investigators choose the second al ternat ive [1-4]. However, a fair ly rigorous theoret ical  basis is 

then needed, in each separate case, for the choice of specimen dimensions, since too smal l  a ratio of length to d i am-  
eter leads to incorrect results, while too large a ratio entails difficulties in preparing specimens of the necessary size, 
an increase in the size of the exper imenta l  apparatus and the demands upon it, and difficulties associated with the in-  
s tal lat ion of temperature sensors, and so on. 

The present paper aims at providing a theoret ical  basis for the choice of opt imal  dimensions of test specimens in 
investigations of the thermophysical  properties of nonmeta l l ic  mater ia ls  by the method proposed in [5], which is based 
on the solution of the problem of constant-rate  heat ing of an infinite hollow cyl inder  with a boundary condition of the 
third kind at  its outer surface and one of the second kind at  its inner surface. 

To derive the appropriate relations, one must analyze  the solution of the following two-dimensional  problem: 
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The solution for quasi-steady heat  flow is: 

T(R, Z, Fo) --=- 1 + P d  Fo - -  q~ (R, Z), (7) 

where 

r z) = 2 f  

2Ki ] Wo(&nR) q ~ ( R ) -  P d W l ( ~ n k )  + ..~r . 

~n (Z) = }nk sh (~" k/l) q- Bi ch (&. k/l) - -  Bi ch (&. k/l) Z 
&n k sh (&n k/l) + Bi ch (~,, k/l) 

6 n are roots of the character is t ic  equation 
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When r --~ 1, the solution for the plane Z = 0 ceases to depend on cyl inder  height  and transforms into the solu- 

tion of the corresponding one-dimensional  problem, which consequently has the form 

T (R, Z, Fo) = 1 + Pd Fo - -  2 ~ % (R). (12) 

It is thus obvious that to choose the specimen dimensions, it  is necessary to analyze  the function @n(0), having 
determined the values of the complex 6nk]l for which the value of this function is fair ly c lme to unity. Then, assigning 
definite values of P~ and k, we can determine h as well .  
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Graph of the relat ions 

'2) B i = 3 . 0 ,  3) Bi --~0o. 

The figure shows the relat ion 41 (0) f ( ~ l k  \ ~ . 
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Curve 1 corresponds to Bi = 1.5, and curve 2 to Bi = 3. O. It can be 
seen from the graph that  when 61k/l = 5.5 for the case Bi = 1 .5  and 61k/l = 
= 5.7 for the case Bi = 3. O, the function @i(O) becomes equal to one with 
an accuracy, as calculat ions show, of 0.5%. Since experiments to deter-  
mine the thermophysical  properties are carried out in the given case with 
specimens for which k = 20, while the outside radius R~ equals 15 x 10"8 m 

it is easy to ealcu.late that the ha l f -he ight  h for such specimens is 0. 056 m 
when Bi = 1.5 and 0. 046 m when Bi = 3 .0 .  

These calculat ions were carried out using values of the first roots in 
expression for $I(0) (61 = 0,073 when Bi = 1.5 and 51 = 0.090 wheb Bi = 
= 3.0) .  Al l  subsequent roots of the characteris t ic  equation (11) for the 
above two values of Bi bring the value of @n(0) close to unity for even 
smal ier  values of 6 n k / l .  

It is interesting to ca lcu la te  theoret ica l ly  the influence of axia l  heat  
fluxes on the temperature field of the cyl inder  when Bi --~ ~.  This is related with the fact that in investigations of 
thermophysical  properties at  high temperatures, transfer of hea t  to the test specimen results mainly  from radiation, 
which finalIy leads to the degenerat ion of the boundary condition of the third kind at the outer surface into one of the 
first kind. Experimentally,  this means that i t  is necessary to mainta in  a l inear  increase in the temperature not of the 
medium, but of the outer surface o f  the test specimen.  

The solution of the corresponding problem is analogous to that given above, but with boundary conditions (4) and 
(6) replaced by the conditions 

TIR=, = I  + P d  Fo, (is) 

T[z=l = l + P d F o ,  (14) 
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and has the form 

T ( R ,  Z ,  F o ) = I + P d F o - - F ( R ,  Z) ,  (15) 

where 

F(R, z)= 2~ ~ ]~ q~(R) ~n(z), (16) 
t l ~ =  1 
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and 6 n are roots of the characteristic equation 
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'When ~-~(Z) -+ 0 the solution for the plane Z = 0 ceases to depend on the height of the cylinder and transforms into 

the solution of the corresponding one-dimensional  problem, which has the form 

T (R ,  Z ,  Fo) = I + Pd Fo - -  2~ a ~-~ ~ (R). (20) z~ 

Obviously, in analyzing this problem, in order to estimate the optimal dimensions of the test specimens, it is 

necessary to examine ~n(Z) at Z = 0. 

=, ) 
= 6.4, ~ (0 )  becomes equal to unity with an accuracy of not less than 0.5%. For specimens with the above values of 1~ 

and k, the calculated value of the cylinder half- length h is 0. 040 m. 

This calculat ion used a value 61 = 0. 121 for the first root of characteristic equation (19). 

Thus, using cylindrical specimens with a ratio h/P~ = 8.0-4.0, one can, with sufficient accuracy, calculate  the 

thermophysical properties from the formulas obtained by solving the one-dimensional  problem formulated in [5]. 

NOTATION 

t - temperature;  to -- ini t ia l  temperature; r - radius; R 1 - inside radius of cylinder; z - height; h - half - length 
of cylinder; R z - outside radius of cylinder; r - t ime;  a - thermal diffusivity; k - thermal conductivity;  q - specific 

heat flux; b - r a t e  of heating;  a - h e a t  transfer coefficient;  T = t/to: R = r / R 1 ;  Z = z/h; l = P2/h; k = R2/t71; Fo = 
- -  a T,R~ - Fourier number;  Bi = a t72/), - Blot number;  Pd = bR22/alo - Predvoditelev number; Ki = qR1/K/o - Kirpichev 

number. 
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